B Shap

CommerceDnver™
Quick-Start Guide for iOS

CommerceDriver™ Quick-Start Guide for iOS

EVO COMIMEICEDIIVEI™ ...ttt s b e s s b e s b s b sb e e b s resbesb e s b snesnesnesne e 3
HOW TEWOTKS ...ttt s a s b bbb s b s b s b s b shesb e s bt eb e ebesbesbesbe s b e sbesbesbeebenaeebesaennis 3
VEISION DELAIIS .ttt b et b et et b et b e s b et e b st et s b et e bt b e e ebesae st nre e 3
COMIPATIDITTTY .ttt b s bbb bbb s b s b e bt s be e b e eaesbesaeeseebeene e 3
INEEEIATION ..ttt et s bt s b et s bt e besae e be s st e b e e st e b e e a b e e beenbesheenbesae et e en b e nbe et e nh e e benaaentes 3
AUTNENTICATION ...ttt ettt b e bbbt b e b b s be s b b e besbesbeebe e bt ebeebeebeebesbesbesneenesnennes 4
TEITNINGAI SEEUP ..ttt ettt sttt s bt st s s s e b s be s b e s b e sbe s b e sbesbeebesbesbesbesbesbesbessesbesbesbesaeesesbesbs 5
TrANSACHION PrOCESSING . c.uiiuiiiieieitieterttet ettt ettt b et s bt e b s bt et esbe e b e sbe e b e sseebesaeenbesanenbeennens 6
FrAMIBWWOIKS ...ttt sttt e b et et b et e st s b et e bt st e st b et e bt s b e st eb e st e st e b et ene st et enensens 8
RefErenNCe INOIMIATION ..ottt sttt b ettt b e st s b et se st e e ebensens 8

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS n

BP Shap*

CommerceDriver™ Quick-Start Guide for iOS

EVO CommerceDriver™

Adding EMV transaction processing to your POS system is easy with the pre-certified £VO
CommerceDriver™ SDK. The pre-certified CommerceDriver™ SDK installs alongside your software
application to add EMV transaction processing to your POS system. CommerceDriver™ facilitates all
transactional communication with the EVO Payments International global processing platforms and
approved hardware devices to isolate payment data and keep it separate from the software
application.

CommerceDriver™ is designed to support multiple terminal manufacturers while retaining a
common API. At startup, CommerceDriver™ detects the supported terminal
manufacturer(s)/models for processing Authorize, Authorize & Capture and Return transactions.

How It Works

1. Create transaction data objects in your POS.
2. Pass the transaction data to CommerceDriver™.

3. CommerceDriver™ initiates terminal commands and gathers tender/EMV data to send to the
EVO Snap* Platform.

4. The EVO Snap* Platform returns a response to CommerceDriver™ with receipt details.

Version Details

* CommerceDriver™ -V2.0.27
* Supports EVOSnap* v2.1.27 Platform calls
* Supported Terminal - Ingenico ICMP via Bluetooth

Compatibility

* CommerceDriver™ Framework - iOS 8.0 & Higher using Objective-C
* Sample Code, Projects & Guides - Created using xCode 8 & iOS 9+

Integration

To get started with CommerceDriver™, select your Platform, Network and Hardware. The setup is
similar to a direct Web Services integration, but CommerceDriver™ must be hosted locally.

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS n

BP Shap*

CommerceDriver™ Quick-Start Guide for iOS

1. Drag and drop the framework files provided by your EVO Snap* Support Engineer into the
Embedded Binaries section of your iOS project target.

2. Add the Import statement to the classes using the CommerceDriver™ framework.

#import <EVOCommerceDriver/EVOCommerceDriver.h>

3. Create an evorlatformConfiguration Specifying your service related information and an
EVOCommerceDriverAPI object to utilize the configuration.

NSString * servicelId = @"<YOUR SERVICE ID>";

NSString * sericeKey = @"<YOUR SERVICE KEY>";

NSString * applicationProfile = @"<YOUR APPLICATION PROFILE ID>";
NSString * hostDescription = @"ANY STRING YOU WANT";

NSString * merchantProfileID = Q@"<OPTIONAL: MERCHANT PROFILE ID>";

EVOPlatformConfiguration * config = [[EVOPlatformConfiguration alloc] initWithServiceID:serviceld serviceKey:sericeKey
applicationProfileId:applicationProfile hostDescription:hostDescription merchantProfileId:merchantProfilelID];

EVOCommerceDriverAPI * commerceDriverAPI = [[EVOCommerceDriverAPI alloc] initWithPlatformConfig:config];

4. Setthe CommerceDriver™logging level. (Optional)

[commerceDriverAPI setLogLevel:EVOLogLevelDebug];

Authentication

After initializing your instance of evocommercepriverart With the svoriatformcontiguration yOU are
required to authenticate to the platform with your Username and Password.

1. Log into the Platformby calling the loginUser:password: method EVOCommerceDriverAPI.

[commerceDriverAPI loginUser:username password:password];

2. Listen For the results notification communicated from the evordentityLoginEvent.

[[NSNotificationCenter defaultCenter] addObserver:self selector:@selector (onIdentityLoginEvent:) name:EVOIdentityLoginEvent
object:nil];

3. Process the login response using the example notification handler below.

- (void)onIdentityLoginEvent: (NSNotification*)notification ({

//Gets the EVO Snap login results object.
EVOIdentityLoginEventArgs *loginResult = [notification userInfo] [EVOEventArgumentsKey];

//The successful flag can be used to determine if login succeeded.

if (loginResult.successful) {
NSLog (@"Logged in successfully with message: %Q@", loginResult.message);
} else {

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS n

CommerceDriver™ Quick-Start Guide for iOS E\‘/) Snap?%

///If login did not succeed, then check the state property to determine the next action.
switch (loginResult.state) {
case EVOIdentityLoginStateSuccessMessage:
/// Logged in successfully
/// Continue normally.

break;
case EVOIdentityLoginStateInvalidCredentialsMessage:
///Login with the supplied credentials failed.
///Prompt the user to try again.
break;
case EVOIdentityLoginStateRequiredFieldsMessage:
///There was a validation error with the data passed to the login call.
///Display the error message to the user and let them retry.
NSLog (@"login message: %@", loginResult.message);
break;
case EVOIdentityLoginStatePasswordChangeRequired:
///Indicates that the user must change their password before proceeding.
break;
case EVOIdentityLoginStateAccountLocked:
///Indicates that the account is locked and the user should be directed to perform a forgot password to
unlock.
break;
case EVOIdentityLoginStateAccountLockedAdmin:
//The account has been locked by the EVO Snap service. It can only be unlocked by contacting support.
NSLog (@"login message: %@", loginResult.message);
break;
case EVOIdentitylLoginStateServiceErrorMessage:
///The service returned an error message.
///Display the error message to the user.
NSLog (@"login message: %@", loginResult.message);
break;

default:
break;

Terminal Setup

CommerceDriver™ supports multiple terminal manufacturer families through individual
frameworks. Choose the terminal(s) your organization would like to support by including the
related framework, create the associated evorerminal object and add it to the

EVOCommerceDriverAPI Object.
A minimum of one terminal is required to perform the following activities.

* Authorize
* AuthorizeAndCapture
* ReturnUnlinked

CommerceDriver™ for iOS currently supports the Ingenico ICMP device. The library for this device is

EVOIngenicoTerminals.framework Version 1.0.0.
To Setup your device:

1. Drag and drop the EVO CommerceDriver™ framework files provided by EVO Snap* Support
Engineer, into the Embedded Binaries section of your iOS project target.

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS ﬂ

BP Shap*

CommerceDriver™ Quick-Start Guide for iOS

2. For the Ingenico library, add the following Import statements to the classes using the
CommerceDriver™ framework.

#import <EVOCommerceDriver/EVOCommerceDriver.h>
#import <EVOIngenicoTerminals/EVOIngenicoTerminals.h>

To Register your device for support:
1. Create the related terminal object and add the object to the svocommercepriverarr.

Sample A — Create an ICMP Terminal w/First Available Paired Device

//You first need a reference to your configured EVOCommerceDriverAPI object.
EVOCommerceDriverAPI *commerceDriverAPI = [self getCommerceDriverObject];

//Create an Ingenico ICMP terminal using the first available terminal that is paired with your 1i0S Device.
//The Identifier parameter is you own unique identifier for the terminal.
EVOTerminal * icmp = [EVOIngenicoICMPTerminal createTerminalWithIdentifier:@"Paired-ICMP"];

//Add that terminal to the CommerceDriver object.
[commerceDriverAPI addTerminal:icmp];

//Tell CommerceDriver which device you want to use.
//Note: When dealing with one terminal, you do not need to make this call as CommerceDriver will use the device

automatically.
[commerceDriverAPI selectTerminal:icmp];

Sample B — Create an ICMP Object Referencing a Specific ICMP Device

//Get a reference to your configured EVOCommerceDriverAPI object.
EVOCommerceDriverAPI *commerceDriverAPI = [self getCommerceDriverObject];

//Create an Ingenico ICMP terminal using the first available terminal that is paired with your i0S Device.

//The Identifier parameter is you own unique identifier for the terminal.

EVOTerminal * icmp = [EVOIngenicoICMPTerminal createTerminalWithAccessoryName:@"ICM122" serialNumber:Q@"20552624"
identifier:@"20552624"];

//Add that terminal to the CommerceDriver object.
[commerceDriverAPI addTerminal:icmp];

//Tell CommerceDriver which device you want to use.

//Note: When dealing with one terminal, you do not need to make this call as CommerceDriver will use the device
automatically.

[commerceDriverAPI selectTerminal:icmp];

Transaction Processing

Two transaction sets can be processed using CommerceDriver™.

Terminal Required Transactions
* Authorize

* Authorize and Capture
* Return Unlinked

No Terminal Required Transactions
* Undo

* Capture

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS n

CommerceDriver™ Quick-Start Guide for iOS

* Return by ID

Creating a POS Transaction Request

To Start a transaction:
1. Create an EvVoPOSTTransactionRequest.

Note: Use the ‘create’ factory methods to create various transaction request types.

/* Use this factory method to create a request of operation type EVOPOSOperationAuthorizeAndCapture
,EVOPOSOperationAuthorize, EVOPOSOperationReturnUnlinked. Any other EVOPosOperation value will produce an exception.
Requests created with this factory method will require a terminal to proceed with the request */

+ (instancetype) createTerminalRequestWithOperation: (EVOPOSOperation)operation amount: (NSDecimalNumber *)amount
employeelId: (NSString *)employeeld laneld: (NSString *)laneIld orderNumber: (NSString *)orderNumber reference: (NSString *)
reference tipAmount: (NSDecimalNumber *)tipAmount cashbackAmount: (NSDecimalNumber *)cashbackAmount
overrideApDupe: (BOOL) overrideApDupe;

/* Use this factory method to create an Undo Request */
+ (instancetype) createUndoRequestTransactionID: (NSString *)transactionID;

/* Use this factory method to create a Capture Request without a tip.*/
+ (instancetype) createCaptureRequestTransactionID: (NSString *)transactionID amount: (NSDecimalNumber *)amount;

/* Use this factory method to create a Capture request with a tip. */
+ (instancetype) createCaptureRequestTransactionID: (NSString *)transactionID amount: (NSDecimalNumber *)amount

tipAmount: (NSDecimalNumber *)tipAmount;

/* Use this factory method to create a Return with a TransactionID */
+ (instancetype) createReturnRequestTransactionID: (NSString *)transactionID amount: (NSDecimalNumber *)amount;

The default initializer can also be used to create a request. For additional information,
please refer to the CommerceDriver™ Apple Doc.

- (instancetype)initWithOperation: (EVOPOSOperation)operation

amount: (NSDecimalNumber *)amount employeelId: (NSString *)employeeld lanelId: (NSString *)laneId orderNumber: (NSString

*)orderNumber reference: (NSString *) reference tipAmount: (NSDecimalNumber *)tipAmount cashbackAmount: (NSDecimalNumber
*) cashbackAmount overrideApDupe: (BOOL)overrideApDupe;

2. Once the POS Request object is created, call the processTransactionrequest method from

the Evocommercepriver Object.
[commerceDriverAPI processTransactionRequest:authAndCaptureRequest];

To Cancel a Request:

1. Ca” cancelAsynchPRocess.

[commerceDriverAPI cancelAsyncProcess:authAndCaptureRequest];

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS

CommerceDriver™ Quick-Start Guide for iOS E\‘/) Snap?%

To Request a POS Delegate:

1. The EVOPOSTransactionRequest USES the EVOPOSTransactionRequestDelegate prOtOCO| to communicate
transaction status. After creating an evorostransactionrequest Set the delegate property to the
class that implements the EVOPOSTransactionRequestDelegate.

EVOPOSTransactionRequest * authAndCaptureRequest = [EVOPOSTransactionRequest
createTerminalRequestWithOperation:EVOPOSOperationAuthorizeAndCapture amount: [NSDecimalNumber numberWithInt:5]
employeeId:@"EE-ID1" laneId:Q@"LN-01" orderNumber:@"ORDER-01"

reference:@"REF-01" tipAmount: [NSDecimalNumber zero] cashbackAmount: [NSDecimalNumber zero] overrideApDupe:YES];

authAndCaptureRequest.delegate = self;

2. The following delegate methods are required.

/// Called when validation of a signature is needed.

/17

/// This method will block the completion of a transaction until the

/// signature is approved or declined.

/17

/// @param request - The original POS Request

/// @param response - The EVO Platform response to that original request.

/// @see EVOTransactionResponse

/// @param completion - You must call the completion block with the

/// outcome of signature verification. Return YES to approve the signature

/// and NO to reject it.

+ (void)getSignatureForRequest: (EVOPOSTransactionRequest *)request
withResponse: (EVOTransactionResponse *)response completion: (void (") (BOOL signatureAccepted))completion;

/// Called when a transaction can not be started.
/// @param request - The original POS Request
/// @param errors - Check this dictionary for the errors encountered
/// starting the Transaction Request.
+ (void) request: (EVOPOSTransactionRequest *)request
failedToStartWithErrors: (NSDictionary *)errors ;

/// Called upon completion of a transaction
/// @param request The original request sent
/// @param response The outcome of the request
/// @see EVOTransactionResponse
+ (void) request: (EVOPOSTransactionRequest *)request completedWithResponse:
(EVOTransactionResponse *)response;

Frameworks

CommerceDriver™ for iOS consists of the following frameworks

* EVOCommerceDriver.framework - The core framework that provides all CommerceDriver™
functionality. This framework is required.

* EVOIngenicoTerminals.framework - This framework provides the terminal implementation
for all Ingenico terminals supported by CommerceDriver™.

Reference Information

For additional information, please visit the EVO Snap* Support site at
http://www.evosnap.com/support/ or contact your EVO Technical Support representative.

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS n

http://www.evosnap.com/support/

