

Commerce Driver™
iOS Quick-Start Guide v1.0

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 1

Understanding EMV® Certification ... 2

What is EMV? .. 2

How Does it Work? .. 2

Becoming EMV Compliant .. 2

Level 1 – Hardware/Terminal Certification ... 2

Level 2 – Kernel Certification .. 2

Level 3 – Payment Application Certification ... 3

EVO Snap* Commerce Driver™ ... 4

How it Works .. 4

Commerce Driver™ Specifications .. 5

Authentication Methods ... 5

System Requirements ... 5

Networks ... 5

Managed API Calls .. 5

Pre-Certified Hardware ... 5

Commerce Driver™ Integration ... 6

Getting Started ... 6

Installation .. 6

Framework Integration ... 6

API Integration.. 7

Swiper Integration ... 8

Request Examples ... 9

Reference Documents .. 10

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 2

Understanding EMV® Certification
What is EMV?
EMV, named after the organizations that created the technology standard – Europay, MasterCard

and Visa – is a technical standard for the interaction between chip-based “smart cards” and

approved payment devices. The standard is now managed by EMVCo, a consortium with control

split equally among American Express, JCB, Discover, MasterCard, UnionPay and Visa.

The purpose of the EMV Specifications is to facilitate the worldwide interoperability and

acceptance of secure payment transactions. During a card-present payment transaction, payment

data – securely stored on a microchip – can either be embedded in a traditional plastic card or

mobile device.

How Does it Work?
EMV devices are able to read data stored on a chip within the card. By using chips as an active part

of the payment transaction, EMV cards and devices help prevent credit card fraud from stolen

account numbers, cloned payment cards and other security and fraud threats that exist today.

Each chip-based card is embedded with encrypted data. During the transaction authorization

process, the encrypted data in the card is used to verify the card’s authenticity. Strong

cryptographic functions are used to authenticate the card and cardholder to ensure validity.

Becoming EMV Compliant
The EMV standards define the interaction at the physical, electrical, data and application levels

between EMV cards and EMV card processing devices. There are three levels of EMV certification:

Level 1 – Hardware/Terminal Certification

Level 1 certification covers the physical interface between the card acceptance

terminal and the EMV card. Responsible Party: Terminal Vendor

Level 2 – Kernel Certification

Level 2 certification covers the software interface between the card acceptance

terminal and the chip card. Responsible Party: Terminal Vendor

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 3

Level 3 – Payment Application Certification

Level 3 certification covers the software interface between a POS application and the card

acceptance terminal. Responsible Party: Software Vendor

Level 3 certification - also called end-to-end (E2E) or network certification - tests each unique EMV

path to the networks. The testing flow is as follows:

❶ Level 1 and 2 certified card device, ❷ the POS software, any middleware or gateway in

use, ❸ the processor, and finally out to ❹ the card brands.

This process must be completed individually for:

1. each device the POS application is using

2. each version of software

3. each processor

4. each network

The cost and complexity of managing certification to each unique EMV path can quickly become

overwhelming. There is a better way. You can create EMV approved iOS based Point of Sale (POS)

applications in a snap with the Commerce Driver™ from EVO Snap*

EMV Card Device POS Software

Payment
Processing

Platform

Networks

❶ ❷ ❸ ❹

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 4

EVO Snap* Commerce Driver™
The Commerce Driver™ makes implementing EMV technology faster

and easier by combining technical, operational and strategic

components into a fully integrated, tested and production-ready

solution.

Meet all EMV Level 3 compliance requirements and instantly enable

PCI-compliant transactions with point-to-point encryption using the

Commerce Driver from EVO Snap*.

How it Works
Like a printer driver, the pre-certified Commerce Driver™ SDK installs alongside your software

application - adding EMV transaction processing to your iOS-based POS systems. The Commerce

Driver facilitates all transactional communication with the EVO Payments global processing

platforms and approved hardware devices to isolate payment data and keep it separate from the

software application.

Advantages of the Commerce Driver™:

1. Easy to install…similar to a printer driver

2. Pre-certified…decreasing your time to market

3. Reduces PCI Compliance scope and liability for merchants

4. Provides Point to Point Encryption for all transactions

5. EVO maintained…no ongoing maintenance costs

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 5

6. Available for both US and EU

Commerce Driver™ Specifications
Authentication Methods

* Chip & PIN

* Chip & Signature

System Requirements

* iOS 7+

Networks

* Bluetooth

* USB

* Ethernet

* Wireless

Managed API Calls

* Login

* Authorize

* Capture

* Authorize & Capture w/Duplicate

Transaction Override

* Resubmit

* Transaction Lookup

* Void w/Forced Void

* Batch Capture w/Forced Void

* Local Settings File w/Authentication

Parameters

Pre-Certified Hardware

Payment Support

Security and

Compliance

Device

Connectivity

Platform

Support

Univ

SDK

 S
m

a
rt

 C
h

ip
 C

a
p

a
b

le
 (

E
M

V
)

M
a

g
S

tr
ip

e
 C

a
p

a
b

le

N
F

C
 C

a
p

a
b

le

P
IN

 C
a

p
a

b
le

P
2

P
E

T
o

k
e

n
iz

a
ti

o
n

U
S

B

B
lu

e
T

o
o

th

A
u

d
io

 J
a

c
k

A
p

p
le

 S
u

p
p

o
rt

A
n

d
ro

id
 S

u
p

p
o

rt

W
in

d
o

w
s

M
o

b
il

e
 S

u
p

p
o

rt

G
lo

b
a

l
S

u
p

p
o

rt

Ingenico

iPP320

iPP350

iCMP

EVO

IT m-50

IT m-100

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 6

Commerce Driver™ Integration
Getting Started
Getting started with the Commerce Driver™ is a snap. Once you’ve selected your desired Platform,

Network and Hardware, the setup is similar to a direct Web Services integration. However,

Commerce Driver™ will need to be hosted locally.

1. Create transaction data objects in your POS.

2. Pass the transaction data to the Commerce Driver™.

3. Commerce Driver™ initiates commands in the terminal and gathers the tender/EMV data

and sends it to the platform.

4. EVO sends a return response to the Commerce Driver™ with details for the receipt.

Installation
1. Download the Commerce Driver™ SDK(s) appropriate for your selected device

manufacturer(s).

2. Unzip the SDK and add .framework file to the project directory (e.g.: /<ProjectName>/src).

Framework Integration
1. Import the framework into your project by clicking file->add files to <ProjectName> and

navigate to the directory where you placed the .framework file. Select the file and ensure

the target project is checked and click ‘Add’.

2. Add the required system frameworks listed in

EVOCommerceDriver.framework/EVOCommerceDriver.h by selecting your project in the

project navigator, selecting your project target in the left column, select “General” at the

top, and scrolling to the “Linked Frameworks and Libraries” section. Click the “+” to add the

listed frameworks by searching.

3. Add the –ObjC flag to your projects selecting your project in the project navigator, selecting

your project target in the left column, select “Build Settings” at the top, and searching for

“Other Linked Flags”. Add the flag by double clicking the field and typing “-ObjC” and hitting

return.

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 7

4. If using the Ingenico version, you will need to add the supported external accessory

protocols key to your projects Info.plist. Select your project in the project navigator, and

your project target in the left column, then select “Info” at the top. Add a new key by

clicking the “+” that appears while hovering over an existing key. The key should be named

“Supported external accessory protocols”, its type is Array. Click the arrow to the left of the

key so that it points down and again click the “+” on the key adding a sub row that should

say “Item 0”. Set the value of this row by double clicking to “com.ingenico.easypayemv.spm-

transaction”

API Integration
1. Import the Commerce Driver. In your class, import the EVOCommerceDriver with:

#import <EVOCommerceDriver/EVOCommerceDriver.h>

2. Configure the API. The API can be configured two (2) ways:

a. Using a configuration file:

i. Add a “configuration.plist” file to your project

ii. Add the following keys to the file: baseURL, serviceID, workflowID,

applicationProfileID, and serviceKey

iii. Create an ESConfiguration object with:

NSString* configPath = [[NSBundle bundleForClass:[self class]]

pathForResource:@"EVOSnapConfig" ofType:@"plist"];

ESConfiguration* config = [ESConfiguration

configurationWithDictionary:[NSDictionary

dictionaryWithContentsOfFile:configPath]];

iv. Initialize EVOCommerceAPI with:

EVOCommerceAPI *api = [[EVOCommerceAPI alloc]

initWithConfiguration:config];

b. Using a dictionary:

i. Create an ESConfiguration object with:

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 8

ii. Initialize EVOCommerceAPI with:

EVOCommerceAPI *api = [[EVOCommerceAPI alloc]

initWithConfiguration:config];

3. Begin making calls. To begin making calls, first call:

Swiper Integration
1. Import the Commerce Driver. In your class, import the EVOCommerceDriver with:

#import <EVOCommerceDriver/EVOCommerceDriver.h>

2. Add the ESSwiperDelegate protocol to your interface. E.g.:

@interface <YourClassName> () <ESSwiperDelegate>

If ESSwiperController supports EMV, use the ESSwiperControllerDelegate

3. Add these required methods to your class:

swipeTransactionAmount:, swiper:didSwipeCard:

If ESSwiperController supports EMV, you will also need to add:

swiper:authorizeEMVTender:completion:,

swiper:didFinishEMVTransactionWithResult:tender:completion:

ESConfiguration *config = [ESConfiguration

configurationWithDictionary:@{ESConfigurationBaseURL:@””,

ESConfigurationServiceID:@””,

ESConfigurationServiceKey:@””,

ESConfigurationWorkflowID:@””,

ESConfigurationApplicationProfileID:@””}];

[api signOnWithUserName:<UserName> password:<Password>

completion:^(ESSignOnResponse *response, NSError *error){}];

As long as your EVOCommerceDriverAPI object isn’t released, the session will

persist. To sign out, call [api removeAuthorization];

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 9

4. Start the swiper by calling:

[ESSwiperController initWithDelegate] or [ESSwiperController

initWithDelegate:loggingEnabled:]. E.g.: ESSwiperController *swiper =

[[ESSwiperController alloc] initWithDelegate:self loggingEnabled:YES];

Request Examples
1. Authorization Example:

2. EMV Authorization Example:

3. Query Family Example:

(void)swiper:(ESSwiper *)swiper didSwipeCard:(id<ESSwipedCardTender>)cardTender{

ESTransactionRequest *request = [ESTransactionRequest new];

request.tender = cardTender;

request.customerPresent = YES;

request.employeeID = @”1”;

request.laneID = @”1”;

request.reference = @””;

request.orderNumber = @””;

[_api authorizeTransaction:request completion:^(ESBankcardTransactionResponse

*response, NSError *error){}];

}

(void)swiper:(ESSwiperController*)swiper

authorizeEMVTender:(id<ESEMVCardTender>)tender completion:(void(^)(NSString

*result))completion{

ESTransactionRequest *request = [ESTransactionRequest new];

request.tender = tender;

request.customerPresent = YES;

request.employeeID = @”1”;

request.laneID = @”1”;

request.reference = @””;

request.orderNumber = @””;

[_api authorizeTransaction:request completion:^(ESBankcardTransactionResponse

*response, NSError *error){

completion(@”8A023030”);

}];

}

ESQueryTransactionsFamilies *request = [ESQueryTransactionsFamilies new];

Request.queryTransactionsParameters.merchantProfileIDs =

@[_api.merchantProfileID];

request.pagingParameters.pageSize = 5;

request.pagingParameters.page = 0;

[_api queryTransactionFamilies:request completion:^(NSArray *results, NSError

*error){}];

Commerce Driver™ iOS Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ iOS Quick-Start Guide v1.0 07272015 10

Reference Documents
For additional assistance, please visit the EVO Snap* Support site at

http://www.evosnap.com/support/ for more information.

Sample code available at http://github.com/evo-snap/#

http://www.evosnap.com/support/
http://github.com/evo-snap/%23

