

Commerce Driver™
Windows® Quick-Start Guide 1.0

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 1

Understanding EMV® Certification ... 2

What is EMV? .. 2

How Does it Work? .. 2

Becoming EMV Compliant .. 2

Level 1 – Hardware/Terminal Certification ... 2

Level 2 – Kernel Certification .. 2

Level 3 – Payment Application Certification ... 3

EVO Snap* Commerce Driver™ ... 4

How it Works .. 4

Commerce Driver™ Specifications .. 5

Authentication Methods ... 5

System Requirements ... 5

Networks ... 5

Managed API Calls .. 5

Pre-Certified Hardware ... 5

Commerce Driver™ Integration ... 6

Getting Started ... 6

Installation .. 6

Framework Integration ... 6

API Integration.. 6

Swiper Integration ... 7

Request Examples ... 9

Reference Documents .. 10

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 2

Understanding EMV® Certification
What is EMV?
EMV, named after the organizations that created the technology standard – Europay, MasterCard
and Visa – is a technical standard for the interaction between chip-based “smart cards” and
approved payment devices. The standard is now managed by EMVCo, a consortium with control
split equally among American Express, JCB, Discover, MasterCard, UnionPay and Visa.

The purpose of the EMV Specifications is to facilitate the worldwide interoperability and
acceptance of secure payment transactions. During a card-present payment transaction, payment
data – securely stored on a microchip – can either be embedded in a traditional plastic card or
mobile device.

How Does it Work?
EMV devices are able to read data stored on a chip within the card. By using chips as an active part
of the payment transaction, EMV cards and devices help prevent credit card fraud from stolen
account numbers, cloned payment cards and other security and fraud threats that exist today.

Each chip-based card is embedded with encrypted data. During the transaction authorization
process, the encrypted data in the card is used to verify the card’s authenticity. Strong
cryptographic functions are used to authenticate the card and cardholder to ensure validity.

Becoming EMV Compliant
The EMV standards define the interaction at the physical, electrical, data and application levels
between EMV cards and EMV card processing devices. There are three levels of EMV certification:

 Level 1 – Hardware/Terminal Certification
Level 1 certification covers the physical interface between the card acceptance
terminal and the EMV card. Responsible Party: Terminal Vendor

Level 2 – Kernel Certification
Level 2 certification covers the software interface between the card acceptance
terminal and the chip card. Responsible Party: Terminal Vendor

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 3

Level 3 – Payment Application Certification
Level 3 certification covers the software interface between a POS application and the card
acceptance terminal. Responsible Party: Software Vendor

Level 3 certification - also called end-to-end (E2E) or network certification - tests each unique EMV
path to the networks. The testing flow is as follows:

❶ Level 1 and 2 certified card device, ❷ the POS software, any middleware or gateway in
use, ❸ the processor, and finally out to ❹ the card brands.

This process must be completed individually for:

1. Each device the POS application is using
2. Each version of software
3. Each processor
4. Each network

The cost and complexity of managing certification to each unique EMV path can quickly become
overwhelming. There is a better way. You can create EMV approved Windows® based Point of Sale
(POS) applications in a snap with the Commerce Driver™ from EVO Snap*.

EMV Card Device POS Software
Payment

Processing
Platform

Networks

❶ ❷ ❸ ❹

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 4

EVO Snap* Commerce Driver™
The Commerce Driver™ makes implementing EMV technology faster
and easier by combining technical, operational and strategic
components into a fully integrated, tested and production-ready
solution.

Meet all EMV Level 3 compliance requirements and instantly enable
PCI-compliant transactions with end-to-end encryption using the
Commerce Driver from EVO Snap*.

How it Works
Like a printer driver, the pre-certified Commerce Driver™ SDK installs alongside your software
application - adding EMV transaction processing to your Windows®-based POS systems. The
Commerce Driver facilitates all transactional communication with the EVO Payments global
processing platforms and approved hardware devices to isolate payment data and keep it
separate from the software application.

Advantages of the Commerce Driver™:

1. Easy to install…similar to a printer driver
2. Pre-certified…decreasing your time to market
3. Reduces PCI Compliance scope and liability for merchants
4. Provides Point to Point Encryption for all transactions
5. EVO maintained…no ongoing maintenance costs

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 5

Commerce Driver™ Specifications
Authentication Methods
* Chip & PIN
* Chip & Signature

System Requirements
* Windows 7, 8, 8.1 & Vista

Networks
* Bluetooth
* USB
* Ethernet
* Wireless

Managed API Calls
* Login
* Authorize
* Capture
* Authorize & Capture w/Duplicate

Transaction Override
* Resubmit
* Transaction Lookup
* Void w/Forced Void
* Batch Capture w/Forced Void
* Local Settings File w/Authentication

Parameters

Pre-Certified Hardware

Payment Support Security and

Compliance
Device

Connectivity
Platform
Support

Univ
SDK

 Sm
ar

t
Ch

ip
 C

ap
ab

le
 (E

M
V)

M
ag

St
ri

pe
 C

ap
ab

le

N
FC

 C
ap

ab
le

PI
N

 C
ap

ab
le

P2
PE

To
ke

ni
za

ti
on

U
SB

Bl
ue

To
ot

h

A
ud

io
 Ja

ck

A
pp

le
 S

up
po

rt

A
nd

ro
id

 S
up

po
rt

W
in

do
w

s
M

ob
ile

 S
up

po
rt

G
lo

ba
l S

up
po

rt

Ingenico
iPP320

iPP350

iCMP

EVO
IT m-50

IT m-100

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 6

Commerce Driver™ Integration
Getting Started
Getting started with the Commerce Driver™ is a snap. Once you’ve selected your desired Platform,
Network and Hardware, the setup is similar to a direct Web Services integration. However,
Commerce Driver™ will need to be hosted locally.

1. Create transaction data objects in your POS.

2. Pass the transaction data to the Commerce Driver™.

3. Commerce Driver™ initiates commands in the terminal and gathers the tender/EMV data
and sends it to the platform.

4. EVO sends a return response to the Commerce Driver™ with details for the receipt.

Installation
1. Download the Commerce Driver™ SDK(s) appropriate for your selected device

manufacturer(s).

Framework Integration
1. Unzip the SDK and add references to the following libraries in your project:

• EVOSnapSDK
• emvswipeapi-pcwd-1.0.0
• Naudio
• Newtonsoft.Json (included or can be installed from Nuget)
• System
• System.Runtime.Serialization
• System.Configuration
• EVOSnapSDK.BBPOS.dll
• EVOSnapSDK.Ingenico.dll
• RBA_SDK_CS.dll

API Integration
1. Configure the API by using the following configuration file:

a. Add the “App.config” file to your project.

i. Create/Add the following keys under the <appSettings> tag:

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 7

Swiper Integration
1. Import the Interfaces and Models namespaces:

2. Declare the service a (private) member:

private static AccountService service;

3. Instantiate the service:

service = new AccountService(serviceKey); //Servicekey provided by EvoSnap

4. Call a LoginUser method with username and password to retrieve the gateway session:

Task<GatewaySession> gatewaySession = service.SignInAsync(m_username, m_password
);

5. Initialize the Library with tokens received from the login method:

service.Initialize(responseTokens.SessionToken, responseTokens.UserAccessToken);

6. Initialize MyDeviceListener interface:

<!-- prod URL points to"https://api.cip.goevo.com/2.1.23/REST"
else "https://api.cipcert.goevo.com/2.1.23/REST" -->
<add key="ProductionBuild"value="false" />
<add key="ApplicationProfileId"value="xxxx"/>
<add key="ServiceId"value="xxxxxxxx"/>
<add key="ServiceKey"value="xxxxxxxx"/>

using EVOSnapSDK.Interfaces;

using EVOSnapSDK.Models;

using EVOSnapSDK.Ingenico; // Use one or the other

using EVOSnapSDK.BBPOS; // based on your hardware

https://api.cip.goevo.com/2.1.23/REST
https://api.cipcert.goevo.com/2.1.23/REST

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 8

var listener = new MyDeviceListener(gatewaySession);

7. Initialize DeviceController:

Note: If this workflow is initialized by EMV, both SerialNumber and EMVCardData are
required. The library returns one value at a time so tracking the values locally is
recommended to ensure both are present before processing transactions. Please see the
SDK package a for sample implementation.

8. Build the BankcardTransaction or BankcardTransactionPro objects using models/schemas
(schemas.evosnap.com.CWS.v2._0) integrated into the EVOSnapSDK library provided by
EVO. Please refer to the SDK package for examples.

m_controller = new DeviceController(listener);

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 9

Request Examples
1. Creating TransactionRequest Example:

2. Authorization Example:

3. Capture Example:

4. Authorize and Capture Example:

public static TransactionRequest MakeTransaction(CardData card)
 {
 return new TransactionRequest
 {
 TransactionData = new
cws.Transactions.Bankcard.Pro.BankcardTransactionDataPro
 {
 Amount = 1,
 CustomerPresent =
cws.Transactions.Bankcard.CustomerPresent.Present,
 EmployeeId = "1",
 LaneId = "1",
 OrderNumber = "123456",
 SignatureCaptured = false,
 Reference = "11222432",
 TransactionCode =
cws.Transactions.Bankcard.TransactionCode.NotSet,
 TransactionDateTime = DateTime.UtcNow,
 CurrencyCode = cws.Transactions.TypeISOCurrencyCodeA3.USD,
 EntryMode = cws.Transactions.EntryMode.Track2DataFromMSR
 },
 Card = card
 };
 }

Task<TransactionResponse> response = paymentService.AuthorizeAsync(transaction
);

Task<BankcardCaptureReponsePro> captureResponse = paymentService.CaptureAsync(
bankcardCapture);

Task<TransactionResponse> response = paymentService.AuthorizeAndCaptureAsync(
transaction);

Commerce Driver™ Windows® Quick-Start Guide

Making Payments a Snap* for Developers | Commerce Driver™ Windows® Quick-Start Guide 10

5. Query Transaction Details Example:

Reference Documents
For additional assistance, please visit the EVO Snap* Support site at
http://www.evosnap.com/support/ for more information.

Sample code available at http://github.com/evo-snap/

TransactionService transactionService = new TransactionService(gatewaySession);

QueryTransactionsDetail queryTransactionsDetail = new QueryTransactionsDetail();

queryTransactionsDetail.PagingParameters = new PagingParameters
{
 Page = 1,
 PageSize = 10
};

queryTransactionsDetail.QueryTransactionsParameters = new
QueryTransactionsParameters
 {
CaptureDateRange = new DateRange() { StartDateTime = DateTime.UtcNow.AddDays(90
), EndDateTime = DateTime.UtcNow },QueryType = QueryType.OR };

Task<List<TransactionDetail>> response = service.GetTransactionDetailsAsync(
queryTransactionsDetail);

// where TransactionDetails is of type
// schemas.evosnap.com.CWS.v2._0.DataServices.TMS.TransactionDetails

http://www.evosnap.com/support/
http://github.com/evo-snap

	Understanding EMV® Certification
	What is EMV?
	How Does it Work?
	Becoming EMV Compliant
	Level 1 – Hardware/Terminal Certification
	Level 2 – Kernel Certification
	Level 3 – Payment Application Certification

	EVO Snap* Commerce Driver™
	How it Works
	Commerce Driver™ Specifications
	Authentication Methods
	System Requirements
	Networks
	Managed API Calls
	Pre-Certified Hardware

	Commerce Driver™ Integration
	Getting Started
	Installation
	Framework Integration
	API Integration
	Swiper Integration
	Request Examples

	Reference Documents

